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Abstract—The derivation for the nonlinear bending response of finite length composite tubes
exhibiting cross-sectional deformations associated with Brazier’s flattening effect is presented using
classical shell theory. Semi-membrane constitutive theory is used to simplify the analysis and local
buckling on the compressive side of the tube is investigated based on the axial stress and local
curvature on the compressive side of the cylinder. The nonlinear system is solved numerically and
results are obtained for various combinations of material and geometric parameters as well as end
conditions. Results of the present investigation are compared with published finite element solutions
and approximate analytical solutions for the Brazier effect of finite length tubes. © 1997 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION

The Brazier effect is a nonlinear phenomenon associated with the bending of long tubes
with deformable cross-sections. It differs from usual nonlinear shell problems in that the
nonlinear response is induced by the macroscopic rotation of the structure, as opposed to
classical boundary layer effects due to the local rotations of shell elements near the bound-
aries. To illustrate, shown in Fig. 1 is an infinitesimal section of a deformed circular cylinder
along with the linear stress state associated with pure bending. Due to the curvature of the
tube axis, the compressive and tensile stresses act at an angle to the unrotated cross-section
and deform the original circular shape into an oval. This ovalization, in turn, decreases the
moment of inertia of the cross-section and leads to a nonlinear load-displacement relation.
Additionally, the deformation of the cross-section increases the axial bending stresses and
lowers the structure’s buckling load. Thus, reliable design of long thin-walled composite
tubes must include consideration of the Brazier effect on all aspects of possible failure
modes.

Fig. 1. Mechanism of Brazier effect to produce ovalization.
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Fig. 2. Moment and radial displacement vs curvature for long isotropic cylinder.

The approach used in the present paper involves the solution of this highly nonlinear
problem using the simplifications proposed by L. G. Brazier (1926) for finitely long shells.
It has been unequivocally shown (see the excellent discussion by Calladine, 1983) that
Brazier’s somewhat crude approximations lead to simple equations that agree remarkably
well with the robust nonlinear solution first formulated by Reissner (1959). Fabian’s (1977)
numerical solution of Reissner’s equation is compared to Brazier’s solution for the moment
and cross-sectional deformation vs end rotation in Fig. 2. The radial displacement is a
measure of the ovalization of the cross-section and one can see that Brazier’s approximation
underestimates the deformation by around 12% at the limit point, while overestimating the
moment by approximately 3%. However, the gains in analytical simplicity and com-
putational efficiency for the approximate solution are well worth the small errors. Through-
out this paper we refer to Brazier’s approximations to justify neglecting certain terms, such
as powers or derivatives of certain functions. It can be shown that retaining these higher-
order terms will result in significant disagreement between Brazier’s solution and the
accurate nonlinear solution of Reissner. For example, Bannister (1984) used a variational
approach analogous to Brazier’s formulation (actually based on the work of Wood (1958),
who included the effects of internal pressure), including all the quadratic terms that are
neglected here. The resulting moment-curvature relations underestimate the nonlinearity
considerably and predict a limit moment with over 30% error. Further discussion of the
differences between these two solutions for infinite length tubes can be found in a recent
paper by the authors (Tatting er al., 1996).

The application of the Brazier effect of finite length tubes was first investigated by
Aksel’rad (1965), who employed Vlasov’s semi-membrane constitutive theory to determine
the effect of the cross-sectional deformation on the structure’s buckling load. Other notable
researchers (Aksel’rad & Emmerling, 1984 ; Libai & Bert 1994) have also employed semi-
membrane theory to simplify the analysis and we will do the same for this investigation.
Semi-membrane (or semi-momentless) theory is a simplified constitutive law that neglects
bending stiffness of the shell wall in the axial direction, thereby eliminating the boundary
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layer present in usual shell problems. It reduces the order of the equations in the axial
direction from eight to four and allows only the membrane boundary conditions to be
stipulated at the ends. Semi-membrane theory also assumes that the circumferential strain
is negligible and as a result, the Poisson effect is often ignored. Its application is for long
shells or ones in which the variation of the stresses and strains is slow in the axial direction
(for further details, see Vasiliev, 1993).

The goal of this paper is to determine the effect of material and geometric parameters
on the bending response and buckling loads of finite length orthotropic cylinders. The
governing equations include the Brazier effect and are derived from classical nonlinear shell
theory (as opposed to direct variational methods that are commonly used for this problem)
and we include the possibility of shear warping of the cross-section, as introduced by Libai
and Bert (1994). Efficient numerical techniques are used to solve the resulting pair of
coupled ordinary differential equations, and the results for the governing parameters are
presented for various boundary conditions and material systems.

2. NONLINEAR SHELL THEORY SOLUTION

We begin with the derivation of the governing equations through classical shell equa-
tions along with the semi-membrane constitutive assumptions. The governing equations
are expressed in terms of the cylindrical displacements (u, v, w), which will be expanded in
a trigonometric series in the circumferential direction. We also utilize Brazier’s sim-
plifications by ignoring products of higher-order terms and by assuming inextensional
deformation of the cross-section.

2.1. Strain-displacement relations

The geometry of the shell is displayed in Fig. 3, where the deformation is symmetric
about x = L/2. The dotted line represents the beam-type deflection of the neutral surface
in the Z-direction, which is defined here as —uv(x, 8 = #/2). We can then define the beam
rotation and curvature in terms of the v displacement :

—dQ 0*
K(x) = =27

ov
0=mn/2 d‘x axz

0x

Qx) = ()

f=m/2
The end rotations can be expressed through the application of the symmetry condition
~ Q0)—Q(L) 1 (£/dQ L2
—_— L = L = —_— = . 2
Q 5 2], \dx dx i K(x)dx 2)

Also note that the compressive stress state is located at the top of the structure which
corresponds to 8 = 0.

We now specialize the kinematic relations with respect to the Brazier-type deformation
that we expect. Sander’s (1963) nonlinear strain-displacement relations for thin shells with

Z,u;

M M
( A -«
X,u N
e ref N a

Fig. 3. Geometry of deformed shell.
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small strains and moderate rotations are used. The surface strain quantities can be expressed
through the cylindrical displacements as

_Ou 1fowY __ow

=T\ ) AP
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=7\ R\ 8) 0T TR\ " 36)
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The nonlinear terms in the surface strains correspond to axial and circumferential rotations
of a shell element. To conform to Brazier’s level of approximation, the only nonlinear term
that we need to keep is for the shear strain. Thus the strains and curvatures become

I R Y () _Lou v 1( ow\dw
&= “=Rlaa™) ™ Raetax R\"T 30

0w 1 [&®w 0o 1/ 3*w ov
Ky=——>, Kg= ——<—“——>, Ko = —ﬁ(zm—a) 4)

We now expand the displacements in terms of a Fourier series in the circumferential
direction. We truncate the trigonometric series after only two terms for v and w, however
for u the third term is needed as a consequence of the definition for the shear strain in eqn
(4) (which will become evident shortly).

u(x, 0) = u; (x) cos 0+ u,(x) cos 20 +us (x) cos 36
v(x,0) = v, (x) sin 0+ v,(x) sin 20
w(x, ) = w,(x) cos § —w,(x) cos 26. )

The work of Aksel’rad (1965) has shown that additional terms in the series for v and w are
required only for shorter cylinders. However, these short cylinders experience a substantial
bending boundary layer due to the edge effects, where the semi-membrane solution may
not be valid. Therefore, the two-term expansion will be considered adequate, while keeping
in mind that the analysis may not be accurate for short cylinders.

We now invoke Brazier’s condition of inextensionality of the cross-section. This implies
that the circumferential strain is zero, so that

1
£y = ﬁ[(vl +w,)cos 0+ (v, —w,) cos 26] = 0. (6)

Therefore, the inextensionality condition generates two algebraic relations for the unknown
displacements.

Uy = —Wy, Dy = w,[2. @)

Here we will eliminate v, and v, and formulate the strain measures of eqn (4) in terms of
the radial displacement components w; and w,. We do this since radial displacement gives
a greater physical feel to the problem than circumferential displacement. However it should
be noted that the resulting equations will be membrane equations, and that the boundary
conditions (in terms of w;) are physically related to the circumferential displacements v,.
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Applying eqns (5) and (7) to eqn (4) and ignoring products of higher order terms (akin
to Brazier) results in Fourier representations of the non-zero strain quantities :

d d d
£, = —ul—cos9+ ﬁcos20+ —u—3cos 30

dx dx dx
Ve = [— —1% — %(1 - 3:’[—v;;)}sin6+ |:— % + %%]sinw—}- [—— 3—;% + %%]sinw
K, = — 6;:;1 cos 6+ a;:zz cos 20,
Ky = — ?’Rl;cos 20, K= %(%isine— —;—%Sin 20). 8)

Note that the nonlinear shear strain contains variations for the harmonic sin 36, so that the
third term for the expansion of » must be included. Thus the mid-surface strain quantities
are all in terms of five unknown functions of x.

2.2. Constitutive relations

The stress—strain behavior for these shells is based on classical lamination theory along
with the semi-membrane assumptions mentioned earlier. Macroscopic laminate stiffness
measures are determined by integrating through the thickness of the shell wall in the usual
manner. In particular, we calculate the extensional and bending stiffnesses as

H2 H2
Ay = .[ Q,dr D;= J Q,r*dr ©)

—H/2 —H/2

where (; are the transformed reduced stiffnesses of an orthotropic layer (see Jones, 1975)
and the r-direction is through the thickness of the laminate. We further restrict our inves-
tigation to balanced symmetric laminates. The relation of the in-plane stress resultants to
the surface strain measures is then

N, Ay Ap 0 Ex M, D,, D, D Ky
Ny |=|412 42 O &9 | My | =| D2 Dy, Dyl % | (10)
Ny 0 0 Agllys M, Dy Dys DggllKyg

We now invoke the assumptions of semi-membrane constitutive theory. First, shell
bending and twisting in the axial direction are ignored. This can be expressed mathematically
as

D,\,,Dy3,D¢, D26, Dgs — 0. (11)
Thus, the bending and twisting moments in the axial direction (M, M,,) are zero. Also,
since the assumptions of semi-membrane theory suppress the Poisson effect, the in-plane
stress resultants depend only on their corresponding strain measures :

Nx = Estx N9 = E()HEO NxB = GXBHYX9' (12)

Here we define the effective moduli in terms of the extensional stiffness measures to include
arbitrary laminate layups:

_A11A22“‘A%2 _A11A12—A%2 G _ Ass
= xe Ty .

E = =
* A H o A, H H

(13)
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The inextensionality condition in the circumferential direction is satisfied at the constitutive
level by the assumption that E; — co. Standard semi-membrane theory also assumes zero
shear strain (i.e. G,y — o0), though for this problem that assumption is invalid. The import-
ance of shear strain was first surmised by Libai and Bert (1994) for arbitrary beam loading,
but the inclusion is also needed under pure bending. For instance, a vertical shear force
applied to the structure would produce shear stresses and strains varying quadratically
across the cross-section to produce warping, much like classical beam analysis (see Fig.
4a). This deformation corresponds to the sinf term of the shear strain in eqn (8). For
beams under pure bending (in which the shear force is identically zero), this type of shear
deformation does not exist and the assumption of zero shear strain should be valid (this
will be seen to be true for the sin 6 term of eqn (8)). However due to the Brazier effect a
different mode of shear warping exists, in which the shear stresses vary as sin 26 (see Fig.
4b). This is a consequence of the presence of the end restraints which maintain the circular
shape of the cross-section. The transformation of the cross-section from an oval in the
middle of the cylinder into a circle at the ends induces these localized shear stresses. As we
shall see, neglecting this shear deformation results in erroneous results of finite length tubes
under bending.

Therefore, including the shear strain completes the necessary constitutive relations for
an orthotropic shell:

N,=E.He, N, =GoHy,s My= DjkKs. (14)

2.3. Equilibrium equations
The nonlinear equilibrium equations for thin shells under semi-membrane constitutive
theory are presented by Vasiliev (1993) as

0 0 04, A4,
69(A1N6)+ ax(A2Nx9)_ 00 Nx+ RB QG_O

0 0 04,
E(AZNX)'F ba(AleG)+ ﬁNxG =0
0
%(AlMe)—AlAzQe =0

0 N, N,
%(AIQG)-A‘A2<KZ+E)+A1AZP=0 (15)

T o< Sin@

(a) Shear Force Warping

\

T o< 8in20

(b) Brazier Effect Warping

Fig. 4. Cross-sectional warping under bending.
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where the bending and twisting terms in the axial direction have been removed. Here A4,
and A4,, R, and R, are the Lamé coefficients and Gaussian curvatures of the surface defined
by the shell in (x, ) coordinates. In the standard nonlinear formulation for cylindrical
shells, these surface parameters are calculated as

1 11
—R:=Kx Ay, =R — =+ +ky (16)

=1
4, R, R

However, the driving mechanism for the Brazier effect relies on the action of the axial
stresses along with the curvature of the axis and shape of the cross-section. Thus the surface
parameters must be derived by assuming a circular shell with some axial curvature and
cross-sectional deformation. Referring to the geometry of Fig. 3, we assume that the cross-
section rotates through an angle equal to the slope of the reference line, Q(x). We also
assume that the cross-section deforms, so that the distance from the reference line is

z= RcosO+u, =(R+w)cosf—vsind. a7

(As will be shown, there is additional deformation in the form of warping of the cross-
section near the ends of the cylinder, however it can be shown that these terms can be
ignored in the calculation of 4,.) Then, the definition for the deformed shell becomes :

X = x—sin Q[(R+ w) cos § —vsin 4]
Y= (R+w)sinf+vcosf
Z = —v,(x)+cosQ[(R+w)cos@—uvsinb]. (18)

Calculation of the Lamé coefficients and Gaussian curvatures in the usual manner (see
Novoshilov, 1959), along with the assumption of small rotations, gives a different expression
for A,:

Ceserl P (12372 g0 2
A =1 KR|:R+<1 4R>cos0 4RCOS30J' (19)

Note that this differs from the usual Lamé parameter for circular cylindrical shells since
0A4,/00 # 0 here.

The four equilibrium equations, eqn (15), are combined into two nonlinear equations
by eliminating the intermediate variables N, and Q,. Some terms are also neglected due to
their relative size. For instance, the equilibrium equations contain many terms which are
multiplied by 4,. However, since kR is much smaller than unity, we can neglect the second
part of A4, for most terms. The exception is when A, has circumferential derivatives which
are multiplied by N,. This derivative of 4, is not equal to zero (though it is for standard
cylindrical shell equations) and the multiplication of it with the largest stress measure
generates a term which cannot be neglected. Therefore, following this argument, the equi-
librium equation in the axial direction is

1o

730 = 0. 20)

dov
L)+

The intermediate stress variables are eliminated through the use of the third and fourth
equilibrium equations, which become
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1 M, R, * M, Ry
QB—R 09 NG—RZ 002 +pR0_Rx

N,. 2D

Insertion of these stress measures into the first of eqn (15) yields an equation for equilibrium
in the circumferential direction:

R R3O R0

1o/R M\ 1M, 10
RoO\R: 202 )T R2 90 TR

0 1 04, 1 0 /Ry
(pR9)+ a(NXO) = Nx+ (R:Nx>
(22)

Substitution of the constitutive laws eqn (14) and the definitions of the mid-surface strains
eqn (8) into the two equilibrium equations yields the necessary equations for the solution
of the unknown displacements.

2.4. Boundary conditions

The Fourier series expansion of the displacements demands that the boundary and
symmetry conditions also be expressed in this manner. In the circumferential direction, the
conditions of periodicity have automatically been fulfilled by the series representation in
terms of sine and cosine. In the axial direction, edge conditions are required at the end of
the tube (x = 0) and at the line of symmetry (x = L/2). These conditions are deduced from
Fig. 3 as

#(0,0) = QRcosh

-0r- ov
3 v(0,0) =0; u(L/2,0)=0; E(L/Z’ 6) =0. (23)

cosf

N0.6) = —>

A remark is needed in regard to the boundary conditions at x = 0. Often the governing
equations are formulated solely in terms of the radial displacement w(x,8) by assuming
that the shear stress is zero. In such a situation it can be shown that the first two options
of eqn (23) need to be replaced with dw/dx = 0 or 0°w/0x> = 0, which are often construed
as clamped or simply supported boundary conditions. Since semi-membrane theory cannot
account for bending of the shell wall in the axial direction, these classifications of “clamped”
and “simply-supported” ends are not appropriate terminology for the boundary conditions.
The concept of clamped vs simply-supported can only be related to the structure as a beam,
that is, through the designations of Q and M at the ends (for this case of pure bending, the
beam would be considered clamped). Therefore, the boundary conditions at x = 0 must
correspond to membrane boundary conditions and the first two choices of eqn (23) cor-
respond to a fixed or free end in the axial direction, respectively. The first choice demands
that the axial displacement vary linearly across the cross-section and that there is no Brazier
effect warping (see Fig. 4). This is a “fixed” or “restrained” end, either from a rigid plate
or a sturdy ring stiffener. The second choice (in terms of N,) can be achieved by a “free”
end or a flexible stiffener. Here cos 26 warping is allowed (see Fig. 4b), but the axial stress
must conform to a linear variation. Of course, these are just the limiting cases: for elastic
ring stiffeners with finite stiffnesses any intermediate combination of these two conditions
is also a possibility. The second boundary condition of eqn (23), v(0,8) = 0, corresponds
to the cross-sectional shape restraint. This equation guarantees that the cross-section does
not experience deformation and remains circular, since the displacements » (and w through
eqn (7)) are zero at the ends.

The boundary conditions of eqn (23) are expressed in terms of the Fourier rep-
resentation of the displacements (i, and w,) as
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0 conditions :

u,(0) = QR
-ot- dw,
» ~ MmO =0 w2 =0 =L =o. (24)
e ©0) = W
20 conditions :
1(0) = 0
» O w0 =0 w(l/2)=0 %(L/Z) =0. (25)
“O=0
36 conditions:
u;(0) =0
» ot Lwp) =o. (26)
wO=0

2.5. Governing equations

Let us first examine the equilibrium equation in the circumferential direction, eqn
(22). Grouping terms as functions of the first three harmonics (6, 26, 36) and setting the
coefficients to zero yields the following ordinary differential equations:

d[—u dw 3w,
Gl a[T - Ex‘(l - ﬁ)] =0, @7
18D,, 6p d[—2u, 1dw, du, /d*w, «
—_——_— —_—— | = —_— — 2
< R R)W”G“’de[ R 22dx] EH dx(dx2 +2>’ 28)
d | —3u; dw;/3w,
GxBHa|: R -+ E(Tﬁ)} =0. (29)

The same technique for the first two harmonics of eqn (20) generates the final two equations

d’u;  GeH[ —u; dw, 3w,
EH S+ [R —E(l—ﬁﬂ_o (30)

EH

2 2
Ty G*"H[—E'ﬁ 19—’33] —o. 31)

dx? R R 2 dx

Thus we have a complete system of five unknowns, five second-order ordinary differ-
ential equations and five sets of boundary conditions. One final equation exists, which
relates the applied moment to the displacement response of the cylinder :

M = —§N, (Rcos6+u,)Rdf. (32)

Note that the moment arm for the axial stress resultant corresponds to the deformed state,
which reflects the change in the moment of inertia of the cross-section. After the expansion
of the displacements the relation becomes:
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du 3w dus; [w
. 2| 2%1 _ 2 _ 3 2
M= ~FEnHR [dx (1 —4R> ~——dx <—4R>j|‘ (33)

This is the one-dimensional beam equation. It should be noted that the loading quantity
M can, in general, be any function of x. A more general approach, using variational
methods and including shear forces on the tube, has been developed by Libai and Bert
(1994), who also take into account the change of the cross-section on the resistance to the
shear loading. Here we restrict our study to pure bending (M = constant).

2.6. Solution for 0 and 30 variation

The equilibrium equations can now be solved analytically for the variables #,, w, and
u; in terms of the unknown displacements u, and w,. We begin by integrating eqns (27) and
(29) and applying the symmetry conditions of eqns (24) and (26). Thus

U dW1 3W2 Cl 3u3 dW] 3W2 _ C2
R+dx<l_ﬁ>_—Gx,,H R~ dx\4R)  ~ GuH (34)

where C, and C, are constants and represent the cos 8 and cos 36 components of the shear
stress. However, application of the boundary conditions at x = L/2 determines that both
constants are zero (this is not true for beams with shear forces). Thus u; and u; are both
expressed in terms of w; and w,. Since w, can be defined from eqns (7), (5) and (1) as

dw, do, ov

T dx T ox)., s @ )

O=mn/2

the equations for the axial displacements are

u = Q(X)R(l 3w2> % ~ —K(x)R<1 - 3ﬂ>

T 4R 4R
- —Q(x)R(X—E) % ~ K(x)R(:—;) (36)

The derivatives of w, are neglected to correctly model Brazier’s linearization. Similarly, we
neglect powers of higher-order terms in eqn (33) so that

M 3w,

Note that both the fixed and free end boundary conditions (eqns (24) and (26)) are
automatically satisfied by eqn (36), and that the axial equilibrium equation for the 6
variation eqn (30) is not used (instead equilibrium in the axial direction is fulfilled by the
beam equation).

2.7. Solution for 20 variation

The combination of the equilibrium equations and boundary conditions, eqns (25),
(28) and (31), along with the solutions for u, and w, yield the complete system for the
solution of the Brazier effect displacements u, and w,. Let us first introduce some non-
dimensional variables which are defined as:
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_ 2x 2L Wy
X=1 u=Pu2 W= (38)

The end rotation, axial curvature, bending moment and pressure are all normalized with
respect to their classical buckling values for an infinite cylinder :

 E.HRQ  E.HR*®(x) _ M _ pR?
f=——— () =——F—= MmM=———r—— p= .
L/D, E,H 2./D\ E.H 2nR./D, E;H 3D,

(39

This leads to the definition of the following three non-dimensional parameters, referred to
as the collapse parameter, tube length parameter and shear length parameter, respectively :

Duby o [2Dul /—GxoLz : (40)
Dy, E, 4E_HR® E.R?

Then the coupled system for the solution of the Brazier problem becomes (primes represent
d/dx)

—:7(w”—1:/)+(1+p)w=X “;x) , @'+ ptw—a) =0,
i 1 2(0) = 0,
M= a(x)(l— 3—2’3> &= f wxdx, -or- w0)=0, @(l)=0, #w(1)=0. (41)
° #(0) =0,

Several limiting cases of the governing equations exist in terms of the nondimensional
parameters , A and p of eqn (40). Firstly, as y — 0, the forcing term in the second equation
of eqn (41) disappears and the Brazier displacements # and w go to zero. For these small
values of the collapse parameter y, the combination of a large axial stiffness E,, which
resists the curvature of the tube and a substantial circumferential bending stiffness D,,,
which hampers the cross-sectional deformation, results in no Brazier effect being present.
Conversely, large values of y increase the influence of the Brazier phenomena for tubes
under bending.

For the tube length parameter A, the limiting cases can be written as:

A—- o = a=0,%=-constant. (42)

The former case is for cylinders so short that the radial restraint totally nullifies the Brazier
effect, while the latter case approaches an infinite length cylinder, which corresponds to
Brazier’s original solution in which the cross-sectional deformation is the same at all
locations along the length. This solution has already been displayed in Fig. 2 and is
represented as

_ _ X . x'&
- ) = = — 4
a=0 w 30+7) m a[l 3057) (43)

where & is the normalized curvature of the tube axis and is now a constant.

Finally, the shear length parameter u measures the extent of the shear boundary layer
near the ends of the cylinder. For 4 — 0, the shear stresses that arise from the transformation
of the cross-section from an oval into a circle (at the restrained ends) are zero and the edge
effects disappear, again leading to the infinite length solution of Brazier. Conversely, large



1430 B. F. Tatting er al.

values of p increase the boundary layer of the shear stresses and lead to the solution
obtained by assuming that the shear strains are zero everywhere. Thus, ignoring the presence
of the shear strain (¢ — o) leads to the simplified system:

=\2 - 1
#w’”%(l +P)W = x2°‘3(x) . = a(x)<1 - 3—2—W> 5= L (%) dx,
W(0) =0
or- , w0)=0, w(1)=0 w()=0. (44)
#(0) = 0

Note that for both systems eqns (41) and (44) the forcing term is dependent on «(X), not
the constant m, thereby making the equations nonlinear with respect to w(x). Numerical
solutions and comparisons for variations of the non-dimensional parameters x4 and 4, as
well as the effect of the end conditions, will be discussed in the results.

3. LOCAL INSTABILITY

The solution of eqn (41) discloses that the moment vs end rotation curve is nonlinear
and that it achieves a maximum limit moment when the deformed cross-section is no longer
able to withstand the applied load. Many investigators have concluded that the failure of
a tube, in the form of a kink on the compressive side of the cylinder, occurs when this limit
moment is surpassed. In truth, this kink is a post-buckled state resulting from local buckling
due to the compressive stresses at the top of the cylinder. In an earlier work by the present
authors (1995), it was shown that this local buckling almost always occurs before the limit
moment is reached. One possible exception is for multi-layered angle ply laminates with a
large value of the collapse parameter y. In fact, y is a measure of the ratio of the buckling
moment (which is proportional to /D, Ep) to the nonlinear limit moment {proportional
to /Dy, E,), which is the reason it is termed the collapse parameter. Here we will restrict
our study to single-layer laminates, composed of either isotropic or orthotropic materials,
for which y = 1. For these structures, the buckling moment will always occur before the
limit point is reached.

Buckling of circular cylinders under bending was most qualitatively defined by Seide
and Weingarten (1961). They determined that the maximum critical bending stress is
roughly equal to the critical buckling stress under axial compression. Local buckling
occurs when the maximum compressive stress (at @ = 0) attains this value. For orthotropic
materials, this critical stress is

—2/D,E,H
O = 37 (45)
pH

where p is the local radius of the cylinder at 8 = 0. Due to the Brazier effect, the cross-
section of the cylinder deforms into an oval and the radius of curvature at the critical
location increases (see Fig. 1), thus lowering the critical buckling stress. Therefore, we can
get a good estimate of the collapse moment by determining when the axial stress on the
compressive side of the cylinder reaches this critical value. Of course, a more reliable
determination of the collapse load would be to perform a stability analysis from the
nonlinear prebuckled state. However, we will employ this Seide-Weingarten approximation
since it is computationally simple and reveals the important points of local buckling in a
straightforward manner.

Only two characteristics of the loaded cylinder need be known to determine stability
under this criterion, the axial stress resultant and the circumferential curvature. Both
quantities have already been defined in terms of the Brazier displacements u, and w, through
eqns (8) and (14). Here we rewrite the relations in non-dimensional form as
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K9 = Rig = —3w(%)cos20

—N.R 3 ~
= = - 2u(x)cos29+oc(x) 1—
2./DEsH 4y A

n

3w4(x) ) cos 06— lv_fl—x)cos 30:|‘ (46)

Then the stipulation that the maximum compressive stress (at § = 0) must remain below
the critical buckling stress to remain stable

Nx(g-———O) —2 DllEgH
H - H

1
[E ko0 = 0)} @7)

generates the stability criterion for orthotropic tubes of arbitrary length
3
a(X) [l —w(@)}— ——=a' (%) < 1 -3w(). (48)
4y A?

This criterion must be investigated at all points along the length of the cylinder. Usually
the solution for the displacements is computed numerically for a given loading parameter
& and the axial stress resultant and buckling envelope are calculated at finite points in the
domain. Buckling occurs when the inequality of eqn (48) is first violated and the kink
should form at that axial location.

4. NUMERICAL RESULTS

The coupled nonlinear systems eqns (41) and (44) are solved numerically using finite
difference techniques and Newton’s method. Though analytical solutions could be obtained
for certain cases of the non-dimensional parameters, the numerical technique is suitably
efficient to fully explore the effects of the parameters on the solution, as well as being
computationally inexpensive enough to use in full scale optimization studies. For this
investigation, the cylinder was assumed to be unpressurized (p = 0) with a collapse par-
ameter x equal to one, thereby rendering the solution dependent solely on the tube length
parameter A and the shear length parameter u. Stability is assessed through eqn (48) and
the moment vs end rotation curves terminate when the Seide-Weingarten criterion is
violated.

4.1. General solution for X and u

The applied bending moment as a function of end rotation is shown in Fig. 5 for
various values of y when 1 = 1. Note that the smaller values of u increase the nonlinear
effect and lead to lower buckling loads. This is due to the fact that small values of the shear
length parameter generate larger shear deformation, thereby allowing additional degrees
of freedom and less stiff structures. For u > 5 in Fig. 5, the solution approaches the case of
no shear strain ( — c0), which corresponds to the system of eqn (44).

Keeping p constant and stipulating various values of A leads to the load—displacement
curves of Fig. 6. Small values of the tube length parameter correspond to short and thin
cylinders which do not undergo ovalization, thus remaining linear and buckling at the
classical value. As /A increases, the effect of the Brazier nonlinearity does too, until it
approaches the infinite length solution given by eqn (43). For this case, the stability criterion
of eqn (48) yields for the buckling loads:

&, =0.66012 m, = 0.51629 w, = 0.14525. (49)

Collapse loads due to local buckling are shown as a function of 1 and y as a surface
plot in Fig. 7a. The contour lines correspond to constant values of the critical buckling
curvature &,. One can see that as the shear length parameter u increases, the contour lines
become parallel, indicating that changes in the value of u do not significantly affect the
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(b)

Fig. 7. Critical curvature for fixed end cylinders.

solution if u is greater than around five. For these regions, the collapse behavior is governed
by the tube length parameter A. Also note that many areas of the surface have critical
curvatures which are below the infinite length value as given by eqn (49). This is due to the
edge effects at the boundaries propagating throughout the structure and significantly
altering the values of the axial stress resultant and circumferential curvature.
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Fig. 8. Critical curvature vs tube length parameter for general material, fixed ends.

To give greater physical feel to the parameters 4 and u, we express them both in terms
of a “material” and ‘“‘geometric” portion :

9D22 L [H GxB L
/1_\/‘4EXH3 E\/% H=JE '’ (50)

Therefore, for a given material system, low values of 4 (which produce very little Brazier
effect) are generated by short and thin cylinders which buckle according to the classical
solution. Longer and thicker cylinders, which are more easily constructed as “tubes”,
undergo drastic Brazier nonlinearity before buckling occurs. Additionally, the importance
of the shear strain is only seen for shorter cylinders, i.e. small values of x. Similar arguments
could be made for the material portion of eqn (50), though the range of parameter values
for typical material systems does not vary as greatly as those of the geometric part. To
illustrate the point further, a surface plot for the critical curvatures of an isotropic cylinder
as a function of length-to-radius ratio L/R and radius-to-thickness ratio R/H is displayed
in Fig. 7b. As expected, short and thin cylinders undergo little Brazier nonlinearity, while
the longer, thicker, tube-like cylinders behave closer to the infinite length case. Figure 7
also reveals why we prefer to employ the non-dimensional parameters A and u, as they
approach a definite solution as they tend toward infinity.

4.2. Influence of shear length parameter

We have seen in Fig. 7a that the nonlinear solution does not significantly change for
larger values of u. This must be investigated in greater detail, for if we can ignore the
presence of shear strain (when u — c0) we can reduce the system of eqn (41) to the single
ordinary differential equation of eqn (44), thereby increasing the efficiency of the solution
technique. To this end, the critical buckling curvature is shown as a function of the tube
length parameter A for various values of the shear length parameter p in Fig. 8. The
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asymptote that the curves all approach as 1 — o is the infinite tube solution of eqn (49).
Small values of u arrive at this asymptote quite quickly, and the effect of ignoring the shear
strain for the Brazier problem (u — o) can lead to serious errors in the calculation of the
buckling load. However, Fig. 8 may be misleading in regard to the range of values that y
can achieve. For instance, specification of the material system for the cylinder under bending
puts a lower bound on the value of x with respect to 4, since from eqn (50)

4GLH® |R

SE.D,, \/I; A (51)
The ratio of R/H must be greater than one half, else the structure is not a cylinder. In fact,
the ratio should be roughly greater than 20, else the thin cylinder assumptions may not
hold. Therefore, values of 4 = 1 for large values of A may not even be feasible. For instance,
Fig. 8 is reproduced for an isotropic cylinder for various values of radius-to-thickness ratios
in Fig. 9a. One can see that all of the different thickness cylinders produce remarkably
similar solutions, and that they all approach the case which ignores the presence of the
shear strain. The largest deviation from this case occurs for shorter, thicker cylinders, as
expected. Similar results apply even to highly orthotropic materials, such as the graphite—
epoxy AS3501 used by Corona and Rodrigues (1995) for the study of infinite length tubes
under bending. For this material, E,/G,, is around 20 and E,/E, approximately 15, yet Fig.
9b reveals that this material also approaches the case of no shear for thinner shells.
Therefore, one can conclude that the shear warping of Fig. 4 is not significant for most thin
shells under pure bending and that the simpler system of eqn (44) can be used except for
small values of 4 and g.

4.3. Influence of boundary conditions

The results presented so far have all been generated with the “fixed end” boundary
condition. We consider this case more realistic, since most testing apparatus and structural
applications involve a rigid plate or sturdy ring stiffener at the end of the cylinder. However,
the “free end” boundary condition can occur in other tube bending applications, or more
commonly, an elastic restraint which lies between the limiting cases of fixed and free is
present. Therefore, it is informative to investigate the effect of the boundary conditions on
the buckling characteristics and load—displacement behavior.

The surface image of Fig. 7 for a fixed end cylinder is reproduced in Fig. 10 as a
contour plot, along with the corresponding level lines for a tube with free ends (dashed
lines). Regions where the contours coincide are the values of 4 and u for which the boundary
effects have no effect. According to Fig. 10, this is true for small values of u, which
approaches the infinite length case as it goes to zero, as stated earlier. Though not evident
on the scale of Fig. 10, very small and very large values of 1 also are independent of
boundary conditions. The small values of A experience no Brazier deformation, while the
large values approach the infinite case for which the boundary conditions have no effect.
For all intermediate values of both parameters, however, the response does vary significantly
according to the end condition. In general, the free end allows for greater movement, thus
producing more nonlinear ovalization and lower buckling loads.

As an illustration of this, load—displacement curves and buckling load comparisons
are performed for both end conditions for an isotropic cylinder with R/H = 100. First,
moment and radial displacement vs end rotation for A =2 are shown in Fig. 11. As
expected, the fixed end generates a stiffer structure due to the extra restraint applied to the
displacements. Shown in Fig. 12 is the critical end rotation and bending moment as a
function of A. Note that the moments approach the asymptotic value of the infinite length
case much faster than the end rotations, due to the small slope of the load-displacement
relation near collapse.

4.4. Comparison to published results
Few references exist concerning finite length tubes that are long enough for the Brazier
effect to be significant. Most cylinders in structural applications are short or have ring
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stiffeners that inhibit the nonlinear ovalization. However, Stephens ez al. (1975) performed
a nonlinear finite element analysis on various length isotropic cylinders under bending and
pressure to measure the amount of ovalization and nonlinearity due to the Brazier effect.
Their results are presented in terms of the amount of ovalization vs the applied bending
moment and are reproduced here in Fig. 13 and compared to the present analysis (the free
end condition is used for both analyses). The curves from Stephens ef al. (1975) end when
a critical buckling moment is determined, which is calculated from the nonlinear equilibrium
state by determining when the amplitude of an axial wrinkle (introduced as an imperfection)
increases dramatically for small increases in the load. However, the choices for the shape
of this buckled state are limited, thereby leading to overestimations of the buckling values
and an incorrect asymptote for longer tubes (the collapse envelope for infinite length tubes
actually approaches the value of the limit load instead of the buckling point of eqn (49)).
Except for this discrepancy for the longer tubes, the comparison of Fig. 13 reveals that our
simpler solution does agree along basic trends with the rigorous nonlinear solution. Further
comparisons with more accurate finite element solutions must also be performed in the
future.

A more recent investigation of the Brazier effect for finite length tubes was performed
by Libai and Bert (1994), who employed semi-membrane theory and the approximations
of Brazier to produce systems analogous to eqns (41) and (44). Approximate closed form
solutions using a simple Rayleigh analysis were generated for orthotropic tubes under the
assumption that the shear strain is zero (u — o0). Critical loads due to local buckling were
estimated along the same lines as those presented here, and their solution for the buckling
moments of isotropic tubes are compared to the present work in Fig. 14. For small values
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of 4, a slight discrepancy exists due to the inclusion of shear strain in our analysis. This
difference seems negligible in Fig. 14, however it should be realized that the critical load is
presented in terms of the moment as opposed to the end rotation, which tends to minimize
the differences due to the small slope of the load—displacement curve near the critical point.
The larger discrepancy occurs in Fig. 14 for longer cylinders with the free end boundary
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condition, where Libai and Bert have used a Rayleigh technique to solve the nonlinear
differential equations. This larger error is due to the approximate solution underestimating
the nonlinearity and producing a higher buckling moment.

5. CONCLUSIONS

The equations governing the nonlinear bending response of finite length composite
tubes that exhibit Brazier’s cross-sectional deformation are derived using classical shell
theory along with the assumptions of semi-membrane constitutive theory and the lineariz-
ation of Brazier. A simple criterion for determining local instability is also employed, and
this buckling estimation along with the system of ordinary differential equations is solved
using numerical methods.

The results presented have shown that the assumption of zero shear strain for a tube
under pure bending is only violated for small values of the parameter u, which correspond
to short cylinders that do not have a high shear stiffness. The dominant parameter influ-
encing the load—displacement response and collapse due to local buckling is the tube length
parameter 4. Furthermore, it was proven that the membrane boundary conditions of either
a fixed or free end is important for almost all values of the cylinder parameters, with the
fixed end condition generally producing stiffer structures and higher buckling loads.
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